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Perturbative and nonperturbative analysis of the third-order zero modes
in the Kraichnan model for turbulent advection

Omri Gat, Victor S. L’vov, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 17 January 1997!

The anomalous scaling behavior of thenth-order correlation functionsFn of the Kraichnan model of
turbulent passive scalar advection is believed to be dominated by the homogeneous solutions~zero modes! of

the Kraichnan equationB̂nFn50. In this paper we present an extensive analysis of the simplest~nontrivial!
case ofn53 in the isotropic sector. The main parameter of the model, denoted aszh , characterizes the eddy
diffusivity and can take values in the interval 0<zh<2. After choosing appropriate variables we can present
nonperturbative numerical calculations of the zero modes in a projective two dimensional circle. In this
presentation it is also very easy to perform perturbative calculations of the scaling exponentz3 of the zero
modes in the limitzh→0, and we display quantitative agreement with the nonperturbative calculations in this
limit. Another interesting limit iszh→2. This second limit is singular, and calls for a study of a boundary layer
using techniques of singular perturbation theory. Our analysis of this limit shows that the scaling exponent
z3 vanishes asAz2 /u lnz2u, wherez2 is the scaling exponent of the second-order correlation function. In this
limit as well, perturbative calculations are consistent with the nonperturbative calculations.
@S1063-651X~97!06306-X#

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.1j
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I. INTRODUCTION

The Kraichnan model of turbulent passive scalar adv
tion @1# pertains to a fieldT(r ,t) which satisfies the equatio
of motion

]T~r ,t !

]t
1u~r ,t !•“T~r ,t !5k¹2T~r ,t !1j~r ,t !. ~1!

Herej(r ,t) is a Gaussian white random force,k is the mo-
lecular diffusivity, and the driving fieldu(r ,t) is chosen to
have Gaussian statistics, and to be ‘‘rapidly varying’’ in t
sense that its time correlation function is proportional
d(t). The statistical quantities that one is interested in are
many-point correlation functions

F2n~r 1 ,r 2 , . . . ,r 2n![^^T~r 1 ,t !T~r 2 ,t !•••T~r 2n ,t !&&,
~2!

where double angle brackets denote an ensemble ave
with respect to the~stationary! statistics of the forcingand
the statistics of the velocity field. Assuming that these cor
lation functions are scale invariant one is interested in
scaling~or homogeneity! exponentz2n of F2n which is de-
fined by

F2n~lr 1 ,lr 2 , . . . ,lr 2n!5lz2nF2n~r 1 ,r 2 , . . . ,r 2n!.
~3!

One expects such a scale invariant solution to exist in
inertial range, i.e., when all the separationsr i j satisfy
h!r i j!L whereh and L are the inner and outer scale
respectively. It is known@1# that forF2 such a solution exists
with z2522zh , wherezh is the exponent of the eddy dif
fusivity, see Eq.~6!.
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The Kraichnan model is unique in the field of turbulen
in that it allows the derivation@2# of an exact differential
equation for this correlation function,

S 2k(
a

¹a
21B̂2nDF2n~r 1 ,r 2 , . . . ,r 2n!5R2n . ~4!

The operatorB̂2n[(a.b
2n B̂ab , andB̂ab are defined by

B̂ab[B̂~r a ,r b!5hi j ~r a2r b!]2/]r a,i]r b, j , ~5!

where the ‘‘eddy-diffusivity’’ tensorhi j (R) is given by

hi j ~R!5h~R!@~zh1d21!d i j2zhRiRj /R
2#, ~6!

and h(R)5H(R/L)zh. HereL is some characteristic oute
scale of the driving velocity field. The parameter that can
varied in this model is the scaling exponentzh ; it character-
izes theR dependence ofhi j (R) and it can take values in th
interval @0,2#. Finally, the right-hand side in Eq.~4! is
known explicitly, but is not needed here. The reason is tha
was argued@3# that the solutions of this equation forn.1
are dominated by the homogeneous solutions~‘‘zero
modes’’!, in the sense that deep in the inertial interval t
inhomogeneous solutions are negligible compared to the
mogeneous one. Also, it was claimed@3# that in the inertial
interval one can neglect the Laplacian operators in Eq.~4!,
and remain with the simpler homogeneous equati
B̂2nF2n50.

Exact solutions of these homogeneous equations are
easy; even in the simplest case ofn52 the functionF4 de-
pends on six independent variables~for dimensionsd.2),
and one faces a formidable analytic difficulty for exact so
tions. Accordingly, several groups considered perturba
solutions in some small parameter, likezh @3# or the inverse
dimensionality 1/d @4#. The rationale for this approach is tha
406 © 1997 The American Physical Society
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56 407PERTURBATIVE AND NONPERTURBATIVE ANALYSIS . . .
at zh50 and d→` one expects ‘‘simple scaling’’ with
z2n5nz2. The exponentz4, and later also the setz2n , were
computed as a function ofzh near these simple scaling lim
its. The other limit ofzh→2 invites perturbation analysis a
well, since one expects that atzh52 all the scaling expo-
nentsz2n would vanish. Such a perturbation theory turn
out to be elusive.

Recently we reported@5# that it is possible to solve ex
actly the homogeneous equation satisfied by the third-o
correlation functionF3(r 1 ,r 2 ,r 3). Note that in Kraichnan’s
model all the odd-order correlation functionsF2n11 are zero
because of symmetry under the transformationT→2T. This
symmetry disappears, for example@6#, if the random force
j(r ,t) is not Gaussian~but d correlated in time!, and in
particular if it has a nonzero third-order correlation

D3~r 1 ,r 2 ,r 3![E dt1dt2^j~r 1 ,t1!j~r 2 ,t2!j~r 3,0!&. ~7!

With such a forcing the third-order correlator is nonzero, a
it satisfies the equation

B̂3F3~r 1 ,r 2 ,r 3!5D3 , B̂3[B̂121B̂131B̂23. ~8!

This equation pertains to the inertial interval and accordin
we neglected the Laplacian operators. We also denoted
D3 the value ofD3(r 1 ,r 2 ,r 3) when all the separation
ur i2r j u tend to zero. The solution of this equation is a sum
inhomogeneous and homogeneous contributions, and b
we study the latter. We will focus on scale invariant hom
geneous solutions which satisfyF3(lr 1 ,lr 2 ,lr 3)
5lz3F3(r 1 ,r 2 ,r 3). We refer to these as the ‘‘zero modes
the scale invariant sector.’’ We note that the scaling ex
nent of theinhomogeneousscale invariant contribution ca
be read directly from power counting in Eq.~8! ~leading to
z35z2). Any different scaling exponent can arise only fro
homogeneous solutions that do not need to balance the
stant right-hand side. The scale invariant solutions of Eq.~8!
live in a projective space whose dimension is lowered
unity compared to the most general form. These solutions
not depend on three separations but rather on two dimens
less variables that are identified below. It will be demo
strated how boundary conditions arise in this space for wh
the operatorB̂3 is neither positive nor self-adjoint.

In Sec. II we present the transformation of variables t
leads to a precise identification of the projective space
this space we present the differential equation that need
be studied, and derive the boundary conditions in the pro
tive space. In Sec. III we discuss the perturbation theory
leads to the solution of the scaling exponents of the z
modes in the limitzh→0. It is shown that the choice o
coordinates of Sec. II leads to a particularly transpar
theory in this limit. In Sec. IV we present the perturbati
theory in the limitzh→2. It turns out that this is a singula
perturbation theory, and we discuss the analytic matchi
across boundary layers and near the ‘‘fusion singulari
which are required to understand this limit, leading to
nonanalytic dependence ofz3 on z2. In Sec. V we deal with
the nonperturbative calculation, culminating with solutio
of z3 as a function ofzh throughout the range 0<zh<2. It is
demonstrated that the nonperturbative solutions are in ag
er
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ment with the perturbative calculations at the two ends
this interval. Section VI is devoted to a summary and a d
cussion.

II. TRANSFORMATION OF VARIABLES

In this section we describe the transformation of variab
in the operatorB3 to new variables that are denoted below
s,r,f. We first note that Eq.~8! is invariant under space
translation, under the action of thed dimensional rotation
group SO(d), and under permutations of the three coor
nates. Accordingly, we may seek solutions in the scalar r
resentation of SO(d), where the solution depends on th
three separationsr 12, r 23 and r 31 only. In the first stage we
transform coordinates to the variablesx15ur 22r 3u2,
x25ur 32r 1u2, x35ur 12r 2u2, defining

F3~r 1 ,r 2 ,r 3!5 f 3~x1 ,x2 ,x3!. ~9!

By the chain rule,

]1iF3~r 1 ,r 2 ,r 3!52~r 13i]2f 31r 12i]3! f 3~x1 ,x2 ,x3!,
~10!

where]1i[(]/] r1i), ]2[(]/]x2), andr 12i[r 1i2r 2i , etc.
Another application of the chain rule gives

]2 j]1i54r 13i r 23j]1]214r 12i r 23j]1]324r 13i r 12j]2]3

24r 12i r 12j]3
222d i j ]3 . ~11!

~For brevity we display only the differential operators expli
itly.! Using 2r 12•r 1352x11x21x3, and similar identities,
we can now obtain

d i j ]2 j]1i52~x11x22x3!]1]212~2x11x22x3!]1]3

12~x12x22x3!]2]324x3]1]222d]3 , ~12!

and

r 12i r 12j
r 12
2 ]2 j]1i5

~x12x22x3!~x12x21x3!

x3
]1]2

12~2x11x22x3!]1]3

12~x12x22x3!]2]324x3]1]222]3 .

~13!

Further calculations, using Eqs.~12! and ~13!, give

B12[r 12
zhS ~d1zh21!d i j2zh

r 12i r 12j
r 12
2 D ]2 j]1i

5x3
zh/2S ~d21!o11~d21!~d1zh!o21

zh
x3
o3D ,

~14!

where

o152~x11x22x3!]1]212~2x11x22x3!]1]3

12~x12x22x3!]2]324x3]1]2 , ~15!



d

-

tie

s
e-

et

this
s.
gle
f

ui-

les

ri-

m-
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o2522]3 , ~16!

o35@x3~x11x22x3!2~x12x22x3!~x12x21x3!#]1]2 .
~17!

The reader should note that theoi operators do not depen
on the parameters of the problem. The operatorsB23 and
B31 are obtained fromB12 by cyclic permutations of the in
dices, thus completing the transformation ofB3 to thex vari-
ables.

Note that not every point in thex1 ,x2 ,x3 space corre-
sponds to a physical configuration. The triangle inequali
between the pairwise distances translate to the condition

2~x1x21x2x31x3x1!>x1
21x2

21x3
2 . ~18!

This inequality describes a circular cone in thex1 ,x2 ,x3
space whose axis is the linex15x25x3, tangent to the
planesx150, x250, andx350. The group of permutation
between thexi axes acts very simply on this cone, corr
sponding to aC6 operation.

The presence of symmetries motivates a new param
zation of the cone by three new coordinatess,r,f:
e

ac

s
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to
rd
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-
e

s

ri-

xn5s@12rcos~f1 2
3np!#, ~19!

0<s,`, 0<r<1, 0<f<2p.

The new space is a direct product of three intervals, and
fact will simplify the discussion of the boundary condition
The s coordinate measures the overall scale of the trian
defined by the originalr i coordinates, and configurations o
constantr andf correspond to similar triangles. Ther co-
ordinate describes the deviation of the triangle from the eq
lateral configuration (r50) up to the physical limit of three
collinear points attained whenr51; f does not have a
simple geometric meaning. Finally we note that the variab
s, r, and cos(3f) are symmetric in thexi variables. Accord-
ingly any function of these variables is automatically inva
ant under the permutation of thexi variables. We will use
this property below.

The final form of the equation is achieved by transfor
ing oi operators to the variabless,r,f. To this end we com-
pute the Jacobian of the transformation~19! using MATH-

EMATICA,
J[
]~s,r,f!

]~x1 ,x2 ,x3!
5

1

A3s2rF 1 2r1cos~f!1A3sin~f! A3cos~f!2sin~f!

1 2r1cos~f!2A3sin~f! 2A3cos~f!1sin~f!

1 2r22cos~f! 2sin~f!/A3
G . ~20!
e

le
ts
ove.

c-

ion
e

The Jacobian matrixJ is substituted in the chain rule to giv
the transformation of the derivatives off 3 with respect to the
x variables in terms of the new variabless,r,f. It is conve-
nient to perform the tedious calculations usingMATH-
EMATICA ending up with expressions foro1 ,o2 , ando3.

We present the final long result as a table, in which e
item is of the form

$ s̄ , r̄ ,f̄,n,m,c%

representing a term of the form

crn
cos

sin
~mf!ss̄]s

s̄]r
r̄ ]f

f̄ .

The trigonometric functions cos or sin appear iff̄ is even or
odd, respectively. Theoi operators are sums of such term
The tables listing the terms appearing in each of the op
tors are presented in the Appendix.

The upshot of the transformation of the linear opera
B̂3 to the new coordinates is that we derive a second-o
linear partial differential operator in thes,r,f variables. At
this point we take advantage of the scale invariance of
differential equation which allows us to seek scale invari
solutions of the formsz3/2f (r,f). Acting on functions of this
form, the operatorss]s and s

2]s
2 become scalar multiplica

tions by 1
2z3 and

1
2z3(

1
2z321), respectively. The action of th
h

.
a-

r
er

e
t

operatorB̂3 yields an equation forf (r,f), which is the basic
equation we study in this paper,

B̂3~z3! f ~r,f!5@a~r,f!]r
21b~r,f!]f

21c~r,f!]r]f

1u~r,f,z3!]r1v~r,f,z3!]f

1w~r,f,z3!# f ~r,f!50. ~21!

We note that Eq.~21! can be written in a coordinate-fre
form as

@2“•PJ ~r,f!•“1q~r,f,z3!•“1w~r,f,z3!# f ~r,f!50,
~22!

where“ is the gradient operator in ther,f space. The iden-
tification of the tensorPJ and the row vectorq is obtained by
comparison with the explicit form~21!. The new operator
B̂3 depends onz3 as a parameter and it acts on the unit circ
described by the polarr,f coordinates. The circle represen
the projective space of the physical cone described ab
We will see that the availability of a compact domain~the
projective space! will lead to the existence of a discrete spe
trum of the zero modes.

The discrete permutation symmetry of the original Eq.~8!
results in a symmetry of Eq.~21! with respect to the six
element group generated by the transformat
f→f12p/3 ~cyclic permutation of the coordinates in th
physical space! andf→2f ~exchange of coordinates!. This
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56 409PERTURBATIVE AND NONPERTURBATIVE ANALYSIS . . .
symmetry extends to a full U(1) symmetry in the two ma
ginal cases ofzh50 andzh52 ~see@7,8# for a discussion of
the latter limit! for which all the coefficients in Eq.~21!
becomef independent. The coefficients in Eq.~21! all have
a similar structure, and, for example,a(r,f) reads

a~r,f!5(
n

@12rcos~f1 2
3pn!#~zh22!/2ã~r,f1 2

3pn!,

~23!

where ã(r,f) is a low-order polynomial inr, cosf, and
sinf which vanishes atr51,f50. We see that the coeffi
cients are analytic everywhere on the circle except at
three pointsr51, f52pn/3 wheren50,1,2. These points
correspond to the fusion of one pair of coordinates, and
coefficients exhibit a branch point singularity there. This s
gularity is a consequence of the nonanalyticity of the driv
velocity field whose eddy diffusivity is therefore characte
ized by a noninteger exponent. This singularity leads t
nontrivial asymptotic behavior of the solutions which h
been described before in terms of the fusion rules@9,10#.
Since the coefficientã vanishes at the fusion point, the sin
gular term in Eq.~23! behaves like a positive power of th
distance to the fusion point. Thus it is always sub-lead
with respect to other terms that come from nonfusing co
dinates and which do not vanish at the fusion point. Inde
in @9,10# it was explained that exposing the singularity ca
for taking a derivative with respect to the fusing coordinat
Note that forzh52 the singularity disappears trivially. Fo
zh50 there is also no singularity sinceã exactly compen-
sates for the inverse power.

The boundary conditions follow naturally when one re
izes thatB̂3 is elliptic for points strictly inside the physica
circle. In the presentation of Eq.~22! this means that

det~PJ !.0 for r,1. ~24!

This property is a consequence of the ellipticity of the ori
nal operatorB̂3. On the other hand,B̂3 becomes singular on
the boundaryr51, where the coefficientsa(r,f) and
c(r,f) vanish. In other words,

PJ•nur5150, ~25!

wheren is a unit vector normal to the boundary. This sing
larity reflects the fact that this is the boundary of the physi
region. It follows thatB̂3 restricted to the boundary becom
a relation between the functionf (r51,f)[g(f) and its
normal derivative]r f (r,f)ur51[h(f). The relation is

bg9~1,f!1uh~1,f!1vg8~1,f!1wg~1,f!50. ~26!

Solutions of Eq.~21! which do not satisfy this boundar
condition are singular, with infiniter derivatives atr51.
Such solutions are not physical since they involve infin
correlations between the dissipation~second derivative of the
field! and the field itself when the geometry becomes col
ear, but without fusion.

It is important to stress that the reason for the regularity
the solutions that do satisfy the boundary conditions is t
detPJ vanishes as a simple zero near the boundary, i.e.
e

e
-

a

g
r-
d,

.

-

-

-
l

-

f
t
as

(12r). Consequently it is possible to find solutions that b
have as (12r)0;O(1) near the boundary. If detPJ had a
stronger zero the condition~26! could not ensure regularity
The physical reason for this regularity is the finite value
three-point correlation functions of collinear configuration

Finally, we are facing the problem of solving Eq.~21!
together with the boundary condition~26!. This homoge-
neous boundary value problem always has a trivial solut
f50. The condition for the existence of a nontrivial solutio
is that B̂3 is not invertible. We expect that noninvertibilit
will not be a generic phenomenon for an arbitrary value
z3. Finding the set ofz3 for which B̂3 is not invertible be-
comes a generalized eigenvalue problem with the expon
z3 playing the role of eigenvalues. We first discuss this p
gram in the limit of smallzh .

III. PERTURBATION THEORY NEAR zh50

The shape of our compact domain invites a Fourier r
resentation inf for the function f (r,f). The permutation
symmetry implies that only cos will appear in this represe
tation, and the index will be divisible by 3. The gener
equation~21! will then mix different Fourier modes. On th
other hand, in the limitzh50 the situation simplifies consid
erably.

A. Zero modes atzh50

The differential equation reduces in the casezh50 to the
simple form

@r2~12r2!]r
21r~12dr2!]r1]f

21lr2# f ~r,f!50,
~27!

where

l[ 1
2 z3~

1
2 z31d21!. ~28!

Since the coefficients of Eq.~27! are independent off the
Fourier modes are decoupled, and we may seek solution
the form f m(r)cosmf with m divisible by 3. The functions
f m obey the ordinary differential equations~ODEs!

@r2~12r2!]r
21r~12dr2!]r2m21lr2# f m~r!50.

~29!

Examining the resulting differential equation we note th
the coefficient of the highest derivative inr vanishes as a
double zero atr50 and as a single zero atr51. Since the
order of the zero is not more than the order of the derivat
the Frobenius theory@11# of regular singularities is appli-
cable to both boundaries. Namely, the complete family
solutions in the vicinity of a given singular pointr0 is
spanned by functions that can be represented as

f m
~ i !~r!5~r2r0!

zi ln~r2r0!
ki (
p50

`

ai ,p~r2r0!
p,

i51,2, ki50 or 1 ~30!

where the sum is convergent in a neighborhood ofr0. One of
the indiceski is always zero. When the indicesz1,2 are dif-
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410 56OMRI GAT, VICTOR S. L’VOV, AND ITAMAR PROCACCIA
ferent, we choose arbitrarilyz1.z2 and thenk1 is zero.
Whenuz12z2u is not an integer one also hask250. In cases
in which the indiceszi coincide we will choosek150, and
k251. The numerical values of the indices are obtained
substituting a solution (r2r0)

z in the differential equation,
collecting the coefficients of the leading terms near the s
gularity, and equating to zero. We refer to the indiceszi as
the ‘‘Frobenius exponents.’’ Equation~29! has regular sin-
gularities at both boundariesr50, 1, with Frobenius expo
nent sets of2m,m and 0, (32d)/2, respectively. The sin
gularity at r51 arises from the singularity of the origina
partial differential equation~PDE! ~21! at this boundary, and
the boundary condition picks the regular solution, i.
f m(r);(12r)0 asr→1. On the other hand, the singulari
at r50 is an artifact of the transformation to polar coord
nates; however, analyticity of the solution atr50 requires
that f m(r);rm as r→0, specifying the second bounda
condition for Eq.~29!.

To proceed with the solution of Eq.~29! we make the
transformationsf̃ m( r̃ )5rmfm(r) and r̃ 5r2, and obtain the
hypergeometric equation forf̃ m ,

$~12 r̃ ! r̃ ] r̃
2
1@m112„m1 1

2 ~d11!…r̃ #] r̃

1 1
4 @l2m~m211d!#% f̃ m~ r̃ !50. ~31!

This equation is standard, see@12#. The unique solution of
Eq. ~31! which satisfies the boundary condition at 0~up to a
multiplication by a constant! is

f̃ m~ r̃ !52F1~a,b;m11; r̃ !, ~32!

where

a5 1
2 ~m2 1

2 z3!, b5 1
2 ~m1d211 1

2 z3!. ~33!

It follows from the theory of the hypergeometric function
that the function f̃ m defined in Eq.~32! is regular atr51
only if either a or b equals2n, wheren is a non-negative
integer. In such a casef̃ m becomes a polynomial of degre
n. The spectrum ofz3 now follows from Eq.~33! and con-
sists of two sets,

z3~m,n!
1 52~m12n!, z3~m,n!

2 522~d211m12n!.
~34!

Sincel(z3(m,n)
1 )5l(z3(m,n)

2 ) @cf. Eq. ~28!#, the correspond-
ing eigenfunctions depend only onn andm. Expressed in
terms of the original variables the eigenfunctions are

f ~m,n!~r,f!

5rm2F1„2n,n1m1~d21!/2;m11;r2…cos~mf!.

~35!

The zero modes of the first set, with positive values
z3, are the ones to be matched at the outer scale. Of th
the most relevant nontrivial zero mode~i.e., the zero mode
with the smallest positive exponent! is f 0,1 with z3(0,1)

1 54,
still less relevant than the scaling of the forced solution. W
y

-

,

f
se,

e

remind the reader that the neglect of the diffusive ter
means that anomalous scaling must be obtained using
outer scale as the renormalization scale, leading to do
nance of thesmallestpositive exponents.

B. Zero modes for 0<zh!1

Perturbation theory forzh→0 will be carried out by ex-
panding the solution for smallzh in terms of thezh50
eigenfunctionsf (m,n) , in a procedure very similar to time
independent perturbation theory in quantum mechanics.
first cast Eq.~29! in Sturm-Liouville form

S 1

r~12r2!~d23!/2]r@r~12r2!~d21!/2]r#2
m2

r2 D f m~r!

52l f m~r!. ~36!

It follows that the zero modesf (m,n) form an orthogonal se
with respect to the inner product

^ f ,g&0[E
r<1

dr df

2p
r~12r2!~d23!/2f ~r,f!g~r,f!.

~37!

We now assume that we may expand the eigenfunction
eigenvalues as

f ~r,f!5 f ~m,n!~r,f!1zhf
~1!~r,f!1O~zh

2!, ~38!

z35z3~m,n!1z3
~1!1O~zh

2!. ~39!

Writing

B~zh ,z3!5B~0,z3~m,n!!1zh@]zh
B~0,z3~m,n!!

1z3
~1!]z3

B~0,z3~m,n!!#1O~zh
2!, ~40!

Eq. ~21! becomes, to orderzh ,

B~0,z3~m,n!! f
~1!~r,f!1@]zh

B~0,z3~m,n!!

1z3
~1!]z3

B~0,z3~m,n!!# f ~m,n!~r,f!50. ~41!

Taking the inner product̂ &0 of Eq. ~41! with f (m,n) , and
using the self-adjointness ofB(0,z3(m,n)) with respect to this
inner product, there follows an expression for the first c
rection toz3,

z3
~1!52

^ f ~m,n! ,]zh
B~0,z3~m,n!! f ~m,n!&0

^ f ~m,n! ,]z3
B~0,z3~m,n!! f ~m,n!&0

. ~42!

The integrals in Eq.~42! were programmed usingMATH-
EMATICA, and we used the program to generate express
for the first few values forz3

(1) presented below:
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m n z3~m,n!
1 z3

1~1!

0 0 0 0

0 1 4
2~22d!

d21

0 2 8
2 ~159191d231d2219d322 d4!

24814 d132d2111d31d4

0 3 12
6 ~7801503d289d22103d3219d42d5!

248028 d1324d21142d3121d41d5

3 0 6
23 ~1518 d1d2!

221d1d2

3 1 10 2
~91d!~24892131d1136d2153d315 d4!

2144236d1100d2165d3114d41d5

6 0 12
3 ~31d!~111d!2~3701216d137d212 d3!

38401544d22584d221460d32310d4229d52d6

m n z3~m,n!
2 z3

2~1!

0 0 22d12 21

0 1 22d22
32d

d21

0 2 22d26
23~90162 d210 d229 d32d4!

24814 d132 d2111 d31d4

0 3 22d210 2
420013010 d2210 d22476 d3293 d425 d5

248028 d1324 d21142 d3121

3 0 22d24 2
~51d!~712 d!

22d2d2

3 1 22d28 2
~91d!~4411135 d2104 d2242 d324 d4!

2144236 d1100 d2165 d3114 d41d5

6 0 22d210
5~111d!~655816508 d12409 d21412 d3133 d41d5!

238402544 d12584 d211460 d31310 d4129 d51d6
. ~43!
ng
et
oy

g

her
is-

e

IV. PERTURBATION THEORY IN THE LIMIT zh˜2

In this section we treat the casez2522zh!1 perturba-
tively. The perturbation theory is singular, since the leadi
order approximation, obtained by setting the small param
z250 is not valid throughout the entire domain.We empl
boundary layer techniques and matching of asymptotics
obtain an asymptotic approximation forz3 in this limit. As
expected,z3 goes to 0 withz2, but with a nontrivial depen-
dence

z35O~Az2 /u lnz2u!. ~44!

A. Leading-order solution

As in the casezh50 discussed above, substitutin
zh52 into the zero-mode equation~21! yields an equation
with coefficients which are independent of the variablef.
This equation reads
-
er

to

@r2~12r2!2]r
21r~12r2!~122r21z3r

2!]r

1~12r2!]f
21w~r!# f ~r,f!50, ~45!

w~r!5r2
z3
2dH ~d12!~d21!1S z3

2
21D

3@~d21!~r211!1r221#J . ~46!

This significant simplification is a consequence of the hig
symmetry of the passive scalar equation in this limit, as d
cussed in detail in Refs.@7,8#.

Making use of the symmetry, we look for solutions of th
form

f ~r,f!5 f m~r!cosmf, m53n, n50,1,2 . . . . ~47!

The functionsf m satisfy the ODEs
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@r2~12r2!2]r
21r~12r2!~122r21z3r

2!]r

2m2~12r2!1w~r!# f m~r!50. ~48!

Equation~48! has regular singularities at the points 0 and
In close analogy with the casezh50 we find that the Frobe
nius exponents at 0 are6m, and choose the solution whic
behaves asrm at 0, thus providing the boundary condition
0.

The behavior near the boundaryr51 is different. In con-
trast with the case 0<zh,2 where one of the Frobeniu
exponents is always 0, whenzh52 the Frobenius exponent
depend on the value ofz3, and generally neither is 0. Thu
the qualitative behavior of the zero modes f
0,z2522zh!1 near r51 is different from that of the
solutions of Eq.~46! where zh is set equal to 2. In othe
words, we expect the existence of a boundary layer n
r51; Eq. ~46! describes well only the behavior of theouter
solution, namely, the leading-order approximation aw
from the boundary layer.

The outer solution may now be written explicitly. Usin
standard transformations@12# Eq. ~48! may be reduced to a
hypergeometric equation, whose solution which obeys
r50 boundary condition is

f m~r!5rm2F1„m/2,~m11!/2;m11;r2…. ~49!

Since we anticipate thatz3!1, we give in Eq.~49! the so-
lution of Eq. ~48! taking z350. This approximation is justi-
fied to leading ordera posteriori, when we find thatz3 is
indeed small. The outer solution is constructed from
f m’s by

f out~r,f!5 (
m50,3,6, . . .

nmfm~r!cosmf. ~50!

The coefficientsnm are unknown at this stage and they w
be determined by matching with the inner solution.
s

a

ye

.

.

ar

y

e

e

The outer solution is a valid asymptotic approximation
the true solution only whenz2!12r. We expect the solu-
tion to vary very rapidly within a boundary layer nea
r51. The physical reason for this is that whenzh52 the
shearing action of the velocity field on any configuration
three points is area preserving. Thus any collinear confi
ration is ‘‘stuck’’ for infinitely long times as long as the
molecular diffusivity is neglected. Whenzh→2 this property
affects strongly configurations that are almost colline
Therefore the inner solution, valid within the boundary lay
should be expressed in terms of a ‘‘fast’’ variablet that
changes on a scale inversely proportional toz2, namely,

r511z2t. ~51!

We therefore change the variabler to t in the differential
equation~21! and keep the leading terms inz2. The resulting
equation for the inner solution is

FtS t2
d11

2d
p~f! D ]t

21S ~d13!~d21!

4d
p~f!2

1

2
t D

3]t1w~1!/4G f in~t,f!50, ~52!

where

p~f!5 (
f85f,f62p/3

ln~12cosf8!~cosf82cos 2f8!,

~53!

and the functionw is defined in Eq.~46!. It is crucial for the
matching between inner and outer solution to realize that
~52! is not valid near the fusion pointsf52pn/3. The sig-
nificance of this fact is explained below.

Equation~52! has a regular singularity att50 which cor-
responds to ther51 boundary, and as in the other cas
demanding regularity gives a boundary condition at t
point. The equation can be again transformed into the hyp
geometric equations, so it has solutions of the form
f in~t,f!5m~f!2F1S 2
~d21!z3

4
,2

1

2
;
~d13!~d21!

2~d11!
;
2d

d11

t

p~f! D . ~54!
eo-
e
nt

eo-
ing
Here again we used the smallness ofz3 and neglected term
of higher order in it. The functionf in provides an asymptotic
approximation to the actual solution when2t!(1/z2). It
depends on the functionm(f) that will be determined by
matching to the outer solution.

B. Asymptotic matching

The next step involves matching of the two approxim
tions f in and f out in their common region of validity

z2!12r!1. ~55!

We perform the matching using standard boundary la
methods by examining the asymptotic behavior off in and
f out in the matching region~55! and balancing coefficients
-

r

We make use of the asymptotic behavior of the hyperg
metric functions@12#. For the outer solution we need th
asymptotics of the hypergeometric function with argume
close to 1, yielding

f out~r,f! ;
12r!1

(
m

2mnm@12mA2~12r!#cos~mf!.

~56!

For the inner solution we use the behavior of the hyperg
metric function for large negative values, and obtain, us
the relation betweenr andt,

f in~r,f! ;
z2!12r

m~f!F11cz3A 12r

z2p~f!
G , ~57!
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where

c5

ApGS ~d13!~d21!

2~d11! D
GS ~d13!~d21!

2~d11!
1
1

2D
d21

4
Ad11

2d
. ~58!

To proceed with the matching of Eqs.~56! and ~57!, we
first match theO(1) terms@for small (12r)#, giving

m~f!5(
m

2mnmcos~mf!, ~59!

i.e., 2mnm are just the coefficients of the Fourier series
m(f). Next we have to match theO(A12r) terms giving

cz3

Az2p~f!
m~f!5(

m
2mA22mnmcos~mf!. ~60!

We expandp(f)21/2 in Fourier series,

p~f!21/25(
m

pmcos~mf! ~61!

and substitute in Eq.~60! to get, using Eq.~59!,

(
m,n

cz3

2Az2
pnnm$cos@~n2m!f#1cos@~n1m!f#%

5(
m

2mA2nmcos~mf!. ~62!

Equating Fourier coefficients of the same order yields fina

(
n

cz3

2Az2
pn~nm1n1n um2nu!52mnm . ~63!

The matching condition~63! is a generalized eigenproblem
for the infinite vectornm , with eigenvaluesz3.

Sincez3 appears in Eq.~63! only through the combination
z3 /Az2, one would be led to conclude thatz35O(Az2) for
all nontrivial solutions of Eq.~63! with different numerical
coefficients. This consideration is modified, however, sin
the coefficientspn themselves also depend onz2 as will now
be demonstrated.

It follows from the definition ofp(f), Eq. ~53!, that

p~f!5O@f2ln~f!# ~64!

for f small. Note that the Fourier coefficientspn are written
as integrals

pn5
1

pE0
2p df

Ap~f!
for n.1. ~65!

All these integrals diverge atf50, which is precisely the
fusion point where the approximation~54! ceases to be valid
requiring a more careful examination of the behavior in t
region. In deriving Eq.~54! we made the approximation
f

y

e

s

~12rcosf!2z2/2;12 1
2 z2ln~12rcosf!

;12 1
2 z2ln~12cosf!,

~66!

for 12r5O(z2). Whenf25O(z2) the second approxima
tion is no longer valid, and one has instead

~12rcosf!2z2/2;12 1
2 z2ln@~12r!1 1

2f2#, ~67!

so that instead of Eq.~52! we get a similar equation in which
p(f) is replaced by ln(2z2t11

2f
2). The resulting equation

is no longer integrable in terms of hypergeometric functio
However, we still expect the asymptotic approximation~57!
to be valid, but for smallf the functionp(f) is no longer
given by Eq.~53!. We may estimatep(f) for smallf by the
following consideration. Examining Eq.~52! we see that
p(f) is the value oft where the coefficient of the secon
derivative crosses over from quadratic behavior to linear
havior, and the coefficient of the first derivative crosses o
from linear to constant behavior. Whenf25O(z2) there is
also a crossover, but to a linear or constant function time
logarithmic function oft. The logarithmic function change
very slowly, and may be approximated roughly by a co
stant. The crossover occurs when

utu;z2ln~z2utu1f2!;z2ln~z2!. ~68!

We are thus led to make the approximation

p~f!;z2lnz2 for f25O~z2!. ~69!

This estimate implies that when calculating the Fourier
efficients in Eq. ~65! the integral should be cut off a
f;Az2, giving the coefficients aAu lnz2u dependence on
z2. It is now possible to balance powers in the matching E
~63!, obtaining the order of magnitude relation~44!.

V. SOLUTIONS FOR GENERAL VALUES OF zh

For general values ofzh and d the differential equation
~21!, which has variable coefficients, is not accessible to a
lytic techniques. In this section we present numerical so
tions of the scaling exponentsz3 for arbitrary values ofzh ,
using a discretized version of the operatorB̂3. Since the dif-
ferential problem is a linear homogeneous equation with
ear homogeneous boundary conditions, the discretized p
lem is also a homogeneous linear equation, implying t
nontrivial solutions exist only when the determinant of t
discretized operator vanishes. This determinant depe
parametrically onz3. Since the differential operator is de
fined on a compact domain we expect the determinan
vanish only for discrete values ofz3 for any given values of
zh and the dimensionalityd. One solution is known to exis
always, a constant zero mode associated withz350. Our
aim is to find the lowest lying positive real solutionsz3 for
which the determinant vanishes.

The discretization of the operatorB̂3 was carried out as
follows: We defined a nine-point finite difference scheme
the second-order equation~21!. The discretization of the
boundary conditions atr51, Eq.~26!, is achieved using the
same scheme, which requires in this case only three bou



th
tr
th
l
he
on

lu
e

n

c
-

g

lu

a-
s
-

s
h-

ve
tiv
r-
n

ly

hes
that
e
in

nt
-
re-
uc-
tent
i-
that
of
the
ns
al-

of
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ary points and one interior point, since on the boundary
radial derivative appears in first order. Using the symme
of the problem we restricted the domain to one-sixth of
circle, 0,f,p/3. The symmetry implies that the origina
problem on the full circle is equivalent to the problem on t
reduced domain with simple Neumann boundary conditi
]f f (r,f)50. On the new boundary linesf50,p/3. As ex-
plained above, the discretized problem is a matrix eigenva
problemB3C50, whereB3 is a large sparse matrix, whos
rank depends on the mesh of the discretization, andC is the
discretized version of the zero modef . We used NAGs
~NAG is a numerical analysis package! sparse Gaussia
elimination routines to find the zeros of det(B3), and deter-
mined the values ofz3 for these zeros as a function ofzh .
The results of this procedure for space dimensionsd52,3,4
are presented in Figs. 1, 2, and 3. The zero modes that
respond to any given value ofz3 can be found straightfor
wardly by inverse iterations of the matrixB3 with an arbi-
trary initial vector.

A. Results

The various branches shown in Figs. 1–3 can be or
nized on the basis of the perturbation theory nearzh50
which was presented in Sec. II. Atzh50 we identify the
actual starting points of the branches with the analytic so
tions for the lowest lying positive values ofz3, which are
4,6,8, etc. In addition, ford52 we observe the highest neg
tive value which is22. Measuring the slopes of the variou
branches atzh50 we find full agreement with the perturba
tive predictions.

We see that in all dimensions the branch which begin
zh50, z354 continues in the nonperturbative region wit
out crossing any other branch until it ends atzh52, z350.
This branch is a continuation of the lowest lying positi
branch predicted by the perturbation theory. The nega
branch~shown only ford52) never rises above its pertu
bative limit and is not relevant for the scaling behavior at a
value of zh . Note also that the pointzh52, z350 is an
accumulation point of many branches, and we display on

FIG. 1. The scaling exponentz3 as a function ofzh found as the
loci of zeros of the determinant of the matrix, ford52.
e
y
e
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e

or-
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e
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part of the actual spectrum near this point. These branc
seem to approach the accumulation point with a slope
grows without limit. This finding is in agreement with th
analytic result of the perturbation calculation presented
Sec. IV.

VI. CONCLUSIONS

It is well known by now that there exists a disagreeme
between the scaling exponentsz4 and the higher-order expo
nentszn computed via perturbative approaches and the p
dictions of another approach based on the fully fused str
ture functions. The latter approach seems to be consis
with the results of numerical simulations in two spatial d
mensions. The main conclusion of the present paper is
this disagreement cannot be ascribed to a formal failure
the perturbation theory. If we accept the statement that
scalar diffusivity is irrelevant, and compare the predictio
of perturbation theory at both ends of the range of the
lowed values of the parameterzh , we find that they are in
excellent agreement with the nonperturbative calculation

FIG. 2. Same as Fig. 1, but ford53.

FIG. 3. Same as Fig. 1, but ford54.
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the scaling exponent, again subject to the assumption tha
diffusivity is irrelevant. Therefore, if we want to understan
the discrepancy between the two approaches mentio
above, there are a few possibilities that have to be sorted
by further research.

~i! The crucial assumption that goes to the fully fus
approach, which is the linearity of the conditional average
the Laplacian of the scalar, is wrong.

~ii ! The computation of the zero modes which is achiev
by discarding the viscous terms inB̂n is irrelevant for the
physical solution. It is not impossible that the limitszh→0
andk→0 do not commute, giving rise to some wicked pro
erties of the very smallzh regime. That this is a possibility is
underlined by recent calculations of a shell model of
Kraichnan model@13#, in which it was shown that the add
tion of any minute diffusivity changes the nature of the ze
modes qualitatively.

~iii ! Lastly, and maybe most interestingly, it is possib
that the physical solution is not strictly scale invaria
through all the range of allowed distances@14#. In other
words, it is possible thatF3(r 1 ,r 2 ,r 3) is not a homogeneou
function with a fixed homogeneity exponentz3, but rather
he

ed
ut

f

d

-

e

o

t

~for example!, that z3 depends on the ratios of the separ
tions~or, in other words, the geometry of the triangle defin
by the coordinates!. If this were also the case for even co
relation functionsF2n , this would open an exciting route fo
further research to understand how non-scale-invariant
relation functions turn, upon fusion, to scale invariant stru
ture functions.

In light of the numerical results of Ref.@15# and the ex-
perimental results displayed in@16,17# we tend to doubt op-
tion ~i!. If we were to guess at this point we would opt fo
possibility ~ii !. More work, however, is needed to clarify th
important issue beyond doubt.
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APPENDIX: THE COEFFICIENTS

$0, 0, 1, 21, 1, 8% $0, 0, 2, 22, 0, 22%

$0, 0, 2, 21, 1, 24% $0, 1, 0, 21, 0, 22%

$0, 1, 0, 0, 1,212% $0, 1, 0, 2, 1, 8%

$0, 2, 0, 0, 0, 22% $0, 2, 0, 1, 1, 24%

o1 : $0, 2, 0, 2, 0, 2% $0, 2, 0, 3, 1, 4%

$1, 0, 1, 21, 1, 28% $1, 1, 0, 0, 1, 8%

$1, 1, 0, 2, 1, 28% $2, 0, 0, 0, 0, 22%

$2, 0, 0, 1, 1, 4%

~A1!

$0, 0, 1, 21, 1, 24% $0, 1, 0, 0, 1, 4%

o2 : $0, 1, 0, 1, 0, 2% $1, 0, 0, 0, 0, 22%
~A2!

o3 : $0, 0, 1, 0, 2, 24% $0, 0, 1, 22, 2, 4%

$0, 0, 2, 0, 0, 1% $0, 0, 2, 22, 0, 21%

$0, 0, 2, 0, 2, 2% $0, 0, 2, 22, 2, 22%

$0, 1, 0, 21, 0, 21% $0, 1, 0, 1, 0, 3%

$0, 1, 0, 3, 0, 22% $0, 1, 0, 0, 1, 22%

$0, 1, 0, 2, 1, 2% $0, 1, 0, 21, 2, 22%

$0, 1, 0, 1, 2, 2% $0, 1, 1, 0, 1, 2%

$0, 1, 1, 2, 1, 22% $0, 1, 1, 21, 2, 24%

$0, 1, 1, 1, 2, 4% $0, 2, 0, 0, 0, 21%

$0, 2, 0, 2, 0, 2% $0, 2, 0, 4, 0, 21%

$0, 2, 0, 1, 1, 22% $0, 2, 0, 3, 1, 2%

$0, 2, 0, 0, 2, 2% $0, 2, 0, 2, 2, 22%

$1, 0, 1, 21, 1, 22% $1, 0, 1, 1, 1, 2%

$1, 1, 0, 1, 0, 22% $1, 1, 0, 3, 0, 2%

$1, 1, 0, 0, 1, 2% $1, 1, 0, 2, 1, 22%

$2, 0, 0, 0, 0, 1% $2, 0, 0, 2, 0, 21% .

~A3!
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