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Perturbative and nonperturbative analysis of the third-order zero modes
in the Kraichnan model for turbulent advection
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The anomalous scaling behavior of th¢h-order correlation functionsr,, of the Kraichnan model of
turbulent passive scalar advection is believed to be dominated by the homogeneous s@etmnsodelsof
the Kraichnan equatiof,,=0. In this paper we present an extensive analysis of the sim(slestrivial)
case ofn=3 in the isotropic sector. The main parameter of the model, denotég,asharacterizes the eddy
diffusivity and can take values in the intervak@,,<2. After choosing appropriate variables we can present
nonperturbative numerical calculations of the zero modes in a projective two dimensional circle. In this
presentation it is also very easy to perform perturbative calculations of the scaling exggranthe zero
modes in the limit{,— 0, and we display quantitative agreement with the nonperturbative calculations in this
limit. Another interesting limit isZ,,— 2. This second limit is singular, and calls for a study of a boundary layer
using techniques of singular perturbation theory. Our analysis of this limit shows that the scaling exponent
{5 vanishes as/Z,/|Ing,|, where{, is the scaling exponent of the second-order correlation function. In this
limit as well, perturbative calculations are consistent with the nonperturbative calculations.
[S1063-651%97)06306-X

PACS numbds): 47.27.Gs, 47.27.Jv, 05.40;

I. INTRODUCTION The Kraichnan model is unique in the field of turbulence
in that it allows the derivation2] of an exact differential
The Kraichnan model of turbulent passive scalar advecequation for this correlation function,
tion [1] pertains to a field (r,t) which satisfies the equation

of motion (—KE V24,

JT(r,t) . . o
pn +U(r,t)-VT(r,)=«VZT(r,)+£&(r,t). () The operato3,, =32 ,B,5, andB, are defined by

Fon(r1,ro, oo Fon)=Ron. (4

> = > = .e —_— 2 . .
Here &(r,t) is a Gaussian white random force,is the mo- Bap=B(ra.t g)=hij(ra=1) 0"l 00 oj00 g ®)

lecular diffusivity, and the driving fieldi(r,t) is chosen to
have Gaussian statistics, and to be “rapidly varying” in the
sense that it; Fime corrgl'ation functign'is proport.ional to hij(R)zh(R)[(thrd—l)aij—ghRiRj/Rz], (6)
4(t). The statistical quantities that one is interested in are the
many-point correlation functions and h(R)=H(R/L)*h. Here £ is some characteristic outer
scale of the driving velocity field. The parameter that can be
For(F1,T 2y oo L o) =UT )T (rp,0) - T(Fon, 1)), varied in this model is the scaling exponept it character-
2 izes theR dependence dij; (R) and it can take values in the
interval [0,2]. Finally, the right-hand side in Eq4) is
where double angle brackets denote an ensemble averafgown explicitly, but is not needed here. The reason is that it
with respect to thestationary statistics of the forcingand ~ was argued3] that the solutions of this equation for>1
the statistics of the velocity field. Assuming that these correare dominated by the homogeneous solutioffgero
lation functions are scale invariant one is interested in thenodes’), in the sense that deep in the inertial interval the
scaling (or homogeneity exponent(,, of F,, which is de- inhomogeneous solutions are negligible compared to the ho-

where the “eddy-diffusivity” tensoth;;(R) is given by

fined by mogeneous one. Also, it was claimgg] that in the inertial
interval one can neglect the Laplacian operators in (Ej.
Fon(NF 1A, oo NEo) =N (P4 o, o o). and remain with the simpler homogeneous equations

(3) BZH‘FZFI: O
Exact solutions of these homogeneous equations are not

One expects such a scale invariant solution to exist in theasy; even in the simplest caserof 2 the functionF, de-
inertial range, i.e., when all the separationg satisfy pends on six independent variablgsr dimensionsd>2),
n<r;<L where » and L are the inner and outer scales, and one faces a formidable analytic difficulty for exact solu-
respectively. It is knowil] that for 7, such a solution exists tions. Accordingly, several groups considered perturbative
with £,=2—{¢,,, where(,, is the exponent of the eddy dif- solutions in some small parameter, likg [3] or the inverse
fusivity, see Eq(6). dimensionality 1d [4]. The rationale for this approach is that
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at {,=0 and d—= one expects ‘“simple scaling” with ment with the perturbative calculations at the two ends of
{on=n¢5. The exponent,, and later also the sét,,, were this interval. Section VI is devoted to a summary and a dis-

computed as a function @f, near these simple scaling lim- cussion.
its. The other limit of{,— 2 invites perturbation analysis as

well, since one expects that =2 all the scaling expo- Il. TRANSEFORMATION OF VARIABLES
nents{,, would vanish. Such a perturbation theory turned ] ) . ] .
out to be elusive. In this section we describe the transformation of variables

Recently we reporte@5] that it is possible to solve ex- In the operatoB3; to new variables that are denoted below as

actly the homogeneous equation satisfied by the third-orde¥:»¢- We first note that Eq(8) is invariant under space
correlation functionFs(r,,r»,rs). Note that in Kraichnan's translation, under the action of tt;é dimensional rotation .
model all the odd-order correlation functiof,,. ; are zero ~ 9roup SO(), and under permutations of the three coordi-
because of symmetry under the transformafien—T. This  nates. Accordingly, we may seek solutions in the scalar rep-
symmetry disappears, for examié], if the random force ~resentation of SGf), where the solution depends on the
&(r,t) is not Gaussian(but & correlated in timg and in  three separations;,, r3 andrg; only. In the first stage we

particular if it has a nonzero third-order correlation transform coordinates to the variables;=|r,—r;/,
X2=|r3— 1|2 x3=|r;—r,|? defining
D3(r1,r2,r3)zf dtldt2<§(rl’tl)g(rz’IZ)g(r&O»' (7) Fs(rl,rzyra):f3(X1,X2,X3)- 9

With such a forcing the third-order correlator is nonzero, andBY the chain rule,

it satisfies the equation
g a1i':3(r1:rz:"3):2(r13'072f3+rla'ﬁs)fe,(xl,Xz,Xg),( )

. X s Ao 10

B3 F3(r1,r2,r3) =Dz, B3=DBio+ Bzt Bos. (8)
Thi i tains to the inertial interval and di IWherealiE(ﬂ/arli), 97=(01dy,), andr3=ry;—ry, etc.
is equation pertains to the inertial interval and accordingly S . .
we neglected the Laplacian operators. We also denoted by Another application of the chain rule gives
D5 the value of Ds(rq,r»,r3) when all the separations
[ri—r;| tend to zero. The solution of this equation is a sum of
inhomogeneous and homogeneous contributions, and below —4r12-r12ja§—25ij83. (17
we study the latter. We will focus on scale invariant homo-
geneous solutions which  satisfy F3(Ari,\r,Ar3) (For brevity we display only the differential operators explic-
=N\%3F5(r,,r,,r3). We refer to these as the “zero modes in itly.) Using 2r ,-r,3= —X;+X,+ X3, and similar identities,
the scale invariant sector.” We note that the scaling expowe can now obtain
nent of theinhomogeneouscale invariant contribution can
be read directly from power counting in E@®) (leading to 0ij 02011 = 2(X1 T X2 X3) 9192+ 2( — X1+ Xp—X3) 9173
{3={5). Any different scaling exponent can arise only from . B B
homogeneous solutions that do not need to balance the con- +2(Xy = Xo—X3) 903~ 4Xgd1dp— 2dd3, (12)
stant right-hand side. The scale invariant solutions of(By.
live in a projective space whose dimension is lowered by
unity compared to the most general form. These solutions do F1al 12 (X — Xo—X3)(X1— Xo+ X3)
not depend on three separations but rather on two dimension- ———d,;d4;=
less variables that are identified below. It will be demon- M2
strated how boundary conditions arise in this space for which +2(— X1+ Xo—X3) 173

the operatot3; is neither positive nor self-adjoint.

In Sec. Il we present the transformation of variables that +2(Xy =X~ X3) 9205~ 4X301d,— 203,
leads to a precise identification of the projective space. In (13
this space we present the differential equation that needs to
be studied, and derive the boundary conditions in the projecFurther calculations, using Eq&l2) and(13), give
tive space. In Sec. Il we discuss the perturbation theory that
leads to the solution of the scaling exponents of the zero
modes in the limit{,,—0. It is shown that the choice of
coordinates of Sec. Il leads to a particularly transparent
theory in this limit. In Sec. IV we present the perturbation
theory in the limit{,— 2. It turns out that this is a singular
perturbation theory, and we discuss the analytic matchings
across boundary layers and near the “fusion singularity”
which are required to understand this limit, leading to &\ here
nonanalytic dependence ¢f on {,. In Sec. V we deal with
the nonperturb_ative calculation, culminating with solqtions 01 = 2(Xg+ Xp— X3) d1 09+ 2(— Xq+ Xp— X3) 10
of {5 as a function o, throughout the range<9¢,<2. Itis
demonstrated that the nonperturbative solutions are in agree- +2(X1— Xy~ X3) dpd3— 4X30105, (15

0201i = 4 131 230102+ 4 151 9370193 4T 131 12{0203

X3 102

I12F 12

Bleriz (d+¢h—1) & _§hr—2> 92j 01
12

:Xgh/2( (d=1)o;+(d—=1)(d+ )0+ %03)’

(14
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0,= — 205, (16) Xp=9[1—pcod ¢+ 3nm)], (19

03=[X3(X1+Xo—X3) = (X{—Xo—X3) (X1 — Xo+X3)]d105.
3= [X3(X1+X— X3 1~ X2 X3)(X1 = X2 3]1(217) Oss<o, 0=p<1, 0<p=<2m.

The reader should note that tle operators do not depend
on the parameters of the problem. The operafss and
B3, are obtained fronB3;, by cyclic permutations of the in-
dices, thus completing the transformationifto thex vari-
ables.

Note that not every point in th&;,x,,X3 space corre-
sponds to a physical configuration. The triangle inequalitie
between the pairwise distances translate to the condition

The new space is a direct product of three intervals, and this
fact will simplify the discussion of the boundary conditions.
The s coordinate measures the overall scale of the triangle
defined by the originat; coordinates, and configurations of
constantp and ¢ correspond to similar triangles. Theco-
rdinate describes the deviation of the triangle from the equi-
ateral configuration g=0) up to the physical limit of three
collinear points attained whep=1; ¢ does not have a
2(X Xp+ x2x3+x3x1)>xf+x§+ xg. (18) simple geometric meaning. Finally we note that the variables
S, p, and cos(®) are symmetric in the; variables. Accord-
This inequality describes a circular cone in the X,,X3 ingly any function of these variables is automatically invari-
space whose axis is the ling=x,=X3, tangent to the ant under the permutation of the variables. We will use
planesx,; =0, x,=0, andxz=0. The group of permutations this property below.
between thex; axes acts very simply on this cone, corre- The final form of the equation is achieved by transform-

sponding to &Cg operation. ing o; operators to the variablesp, ¢. To this end we com-
The presence of symmetries motivates a new parametrpute the Jacobian of the transformati@tf) using MATH-
zation of the cone by three new coordinases, ¢: EMATICA,

. [1 —p+cogp)+3sin(¢)  \3codp)—sin(¢)
1 —p+cogp)—\3sin¢p) —3cog¢)+sin(e) |. (20)
1 —p—2c0g ¢) 2sin(¢)//3

a(s,p, )

J= =
ﬁ(X]_,XZ 1X3) \/§Szp\‘

The Jacobian matrid is substituted in the chain rule to give operatorB; yields an equation fof(p, ¢), which is the basic
the transformation of the derivatives bf with respect to the  equation we study in this paper,

X variables in terms of the new variableg, ¢. It is conve-

nient to per_form th(_a tedious _calculations USIMEATH- és(gs)f(p,¢):[a(p,¢)a§+ b(p,¢)a§,+ c(p,$)d,dy
EMATICA ending up with expressions far;,0,, andos.
We present the final long result as a table, in which each +u(p,¢,83)d,Tv(p,$,{3)dy
item is of the form
+wW(p,¢,{3)1f(p,¢)=0. (21)
{s,p,¢,n,m,c} We note that Eq(21) can be written in a coordinate-free

form as

representing a term of the form .
cos _—— (22
cp" . (Mep)sSaghds.
sin whereV is the gradient operator in the ¢ space. The iden-
_ tification of the tensoP and the row vectoq is obtained by
The trigonometric functions cos or sin appeasifs even or  comparison with the explicit forn21). The new operator

odd, respectively. The; operators are sums of such terms. g gepends ord; as a parameter and it acts on the unit circle
The tables listing the terms appearing in each of the operajescribed by the polar, ¢ coordinates. The circle represents
tors are presented in the Appendix. _ the projective space of the physical cone described above.
i The upshot of the transformation of the linear operatofye will see that the availability of a compact domathe

B; to the new coordinates is that we derive a second-ordggrojective spacewill lead to the existence of a discrete spec-
linear partial differential operator in thgp, ¢ variables. At  trum of the zero modes.

this point we take advantage of the scale invariance of the The discrete permutation symmetry of the original ).
differential equation which allows us to seek scale invariantesults in a symmetry of Eq21) with respect to the six
solutions of the forns?¥?f(p, ¢). Acting on functions of this  element group generated by the transformation
form, the operatorsds and s2a§ become scalar multiplica- ¢— ¢+2#/3 (cyclic permutation of the coordinates in the
tions by 35 and3{5(3{5— 1), respectively. The action of the physical spaceand¢— — ¢ (exchange of coordinatgsThis
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symmetry extends to a full U(1) symmetry in the two mar-(1—p). Consequently it is possible to find solutions that be-
ginal cases of,=0 and{,=2 (see[7,8] for a discussion of have as (+ p)°~O(1) near the boundary. If dethad a

the latter limiy for which all the coefficients in Eq(21)  stronger zero the conditiof26) could not ensure regularity.
become¢ independent. The coefficients in EQ1) all have  The physical reason for this regularity is the finite value of

a similar structure, and, for exampla(p, ¢) reads three-point correlation functions of collinear configurations.
Finally, we are facing the problem of solving E1)
a(p.¢>)=2 [1- pcog ¢+ 2mn)]éh=2/23(p, b+ 27n), together with the boundary conditiof26). This h(_)moge— _
n neous boundary value problem always has a trivial solution

(23 f=0. The condition for the existence of a nontrivial solution

is thatl§3 is not invertible. We expect that noninvertibility
will not be a generic phenomenon for an arbitrary value of
éff3. Finding the set of/; for which Bj is not invertible be-
comes a generalized eigenvalue problem with the exponents
é3 playing the role of eigenvalues. We first discuss this pro-
gram in the limit of smallgy, .

whereE(p,qﬁ) is a low-order polynomial inp, cosp, and
sing which vanishes ap=1,6=0. We see that the coeffi-
cients are analytic everywhere on the circle except at th
three pointsp=1, ¢=2mn/3 wheren=0,1,2. These points
correspond to the fusion of one pair of coordinates, and th
coefficients exhibit a branch point singularity there. This sin-
gularity is a consequence of the nonanalyticity of the driving
velocity field whose eddy diffusivity is therefore character- Ill. PERTURBATION THEORY NEAR  £,=0

ized by a noninteger exponent. This singularity leads to & The shape of our compact domain invites a Fourier rep-
nontrivial asymptotic behavior of the solutions which had ogentation ing for the functionf(p,). The permutation

been described before in terms of the fusion ryR40. g mmetry implies that only cos will appear in this represen-
Since the coefficiena vanishes at the fusion point, the sin- tation, and the index will be divisible by 3. The general
gular term in Eq.(23) behaves like a positive power of the equation(21) will then mix different Fourier modes. On the

distance to the fusion point. Thus it is always sub-leadingsther hand, in the limit,,=0 the situation simplifies consid-
with respect to other terms that come from nonfusing coorerably.

dinates and which do not vanish at the fusion point. Indeed,
in [9,10] it was explained that exposing the singularity calls

for taking a derivative with respect to the fusing coordinates. ) ] ) )
Note that for{,=2 the singularity disappears trivially. For _ The differential equation reduces in the cdge=0 to the

A. Zero modes at,=0

_ . . L simple form
{,=0 there is also no singularity sinae exactly compen-
sates for the inverse power. 201= p2Y02+ p(1—do2) 9 + 92+ N\ p21f =0
The boundary conditions follow naturally when one real- Lo"(L=p2)d, % p(1=dp%)d,+ Iyt hp7]T(p. &) ’(27)
izes thatB; is elliptic for points strictly inside the physical
circle. In the presentation of EqR2) this means that where
de(P)>0 for p<1. (24) N=17y(2L+d—1). (29)

This property is a consequence of the ellipticity of the origi- Since the coefficients of Eq27) are independent op the

nal operatoi3;. On the other hand3; becomes singular on Fourier modes are dec_oupled,_ gn_d we may seek 30|l_1ti0n5 of
the boundaryp=1, where the coefficienta(p,¢) and the formf.(p)cosng with m divisible by 3. The functions
c(p, ) vanish. In other words, f, obey the ordinary differential equatiof®DES9

F-n|,_,=0, (25) [pz(l—pz)é’§+p(l—dp2)0p—m2+>\pz]fm(p)=0-( )
29
wheren is a unit vector normal to the boundary. This singu- . . . . .
larity reflects the fact that this is the boundary of the physicaFX@mining the resulting differential equation we note that

region. It follows thaﬂ%3 restricted to the boundary becomes the coefficient of the highest derivative jnvanishes as a

. : B _ ; double zero ap=0 and as a single zero pt=1. Since the
a relation _betyveen the funCtEf(p_l’qS)_g(@ ar_1d its order of the zero is not more than the order of the derivative
normal der|vat|veapf(p,¢)|p:1=h(¢). The relation is

the Frobenius theory11] of regular singularities is appli-
bg"(1,¢)+uh(L,¢)+vg’ (1,¢)+wg(L,h)=0. (26) cable to both boundaries. Namely, the complete family of
solutions in the vicinity of a given singular poini, is
Solutions of Eq.(21) which do not satisfy this boundary spanned by functions that can be represented as
condition are singular, with infinitey derivatives atp=1.
Such solutions are not physical since they involve infinite

o

O(n)=(p—pn) — o)k . — )P
correlations between the dissipatisecond derivative of the fm (p)=(p=po)®In(p=po) ’;0 ai p(P—po)®,
field) and the field itself when the geometry becomes collin-
ear, but without fusion. i=1,2, k=0 or 1 (30)

It is important to stress that the reason for the regularity of
the solutions that do satisfy the boundary conditions is thaivhere the sum is convergent in a neighborhoodfOne of
detP vanishes as a simple zero near the boundary, i.e., d@he indicesk; is always zero. When the indiceg, are dif-
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ferent, we choose arbitrarilg;>z, and thenk; is zero. remind the reader that the neglect of the diffusive terms
When|z, —z,| is not an integer one also hias=0. In cases means that anomalous scaling must be obtained using the
in which the indices; coincide we will choosé;=0, and outer scale as the renormalization scale, leading to domi-

k,=1. The numerical values of the indices are obtained byrance of thesmallestpositive exponents.
substituting a solutiong— pg)? in the differential equation,

coIIe(_:ting the coeff_icients of the leading terms near the sin- B. Zero modes for 0<Z,<1
gularity, and equating to zero. We refer to the indigess ) _ _
the “Frobenius exponents.” Equatiof29) has regular sin- Perturbation theory fof,—0 will be carried out by ex-

gularities at both boundarigs=0, 1, with Frobenius expo- Panding the solution for smak, in terms of the,=0
nent sets of-m,m and 0, (3-d)/2, respectively. The sin- eigenfunctionsfy, ), in a procedure very similar to time
gularity atp=1 arises from the singularity of the original independent perturbation theory in quantum mechanics. We

partial differential equatiofPDE) (21) at this boundary, and first cast Eq(29) in Sturm-Liouville form
the boundary condition picks the regular solution, i.e., 2

. . 1 m
fm(p)~(_1—p)0 a-sp—>l. On the other hand, the smgularlty m&p[p(l—pz)(d’nlzap]— —|f.(p)
at p=0 is an artifact of the transformation to polar coordi- p(1=p°) P
nates; however, analyticity of the solution @0 requires =\ o(p) 36)
m(p)-

that f,,(p)~p™ as p—0, specifying the second boundary
condition for Eq.(29).
To proceed with the solution of Eq29) we make the It follows that the zero modef, ,) form an orthogonal set
transformations ,,(p) = p™f (p) andp = p2, and obtain the ~ With respect to the inner product
hypergeometric equation fdf,,,, dpds
p _
{(1=p)pd2+[m+1—(m+3(d+1))pl5; (f.9)0= JPSl 2 PPV (p.)0(p. 0).

1 . (37
+3n—m(m—1+d)]}Tu(p)=0. (31

We now assume that we may expand the eigenfunction and

This equation is standard, s . The unique solution of '
d ee2) d eigenvalues as

Eq. (31) which satisfies the boundary condition afup to a
multiplication by a constaintis )
f(p, ) =fmn(p. )+ &fP(p,#)+0(L), (39

Tm(p)=2F1(a,b;m+1;p), (32
(3= Laimm+ L5+ O(LD). (39
where
a=3(m—3{3), b=3(m+d—1+3¢3). (33 writing
It follows from the theory of the hypergeometric functions B({n,43)=B(0.{3(mn)) + {nl[ 9z, B(0L3(mn))
that the functionf ,, defined in Eq.(32) is regular atp=1 L )
only if eithera or b equals—n, wheren is a non-negative + {5 )6’g3B(0,§3<m,n>)]+0(§h), (40

integer. In such a casg,, becomes a polynomial of degree
n. The spectrum of; now follows from Eq.(33) and con-

sists of two sets, Eqg. (21) becomes, to ordef,,,

gg(m’n)=2(m+2n), g;(m,n):_z(d_l_"m""zn)- B(Oa§3(m,n))f(l)(l)a¢)+[aghB(OgB(m,n))

(34)
+¢590,,B(0.L3(mn) I mm(p,#)=0.  (41)
Since)\(gg(myn))=)\(§;(m,n)) [cf. Eq. (28)], the correspond-
ing eigenfunctions depend only anand m. Expressed in

terms of the original variables the eigenfunctions are Taking the inner product ), of Eq. (41) with f, ), and

using the self-adjointness &(0,{3(m, n)) With respect to this
f inner product, there follows an expression for the first cor-
(m,n)(P’QS) .
rection to{s,
=p™F(—n,n+m+(d—1)/2;m+1;p>)cogme).

(39

A (Fimny +92,B(0.L3(mn) Fmm)o

_— . 42
3 (Fimn) +9¢,B(0.L3(mn) Frmmo 42

The zero modes of the first set, with positive values of
{3, are the ones to be matched at the outer scale. Of these,
the most relevant nontrivial zero modee., the zero mode The integrals in Eq(42) were programmed USINGIATH-
with the smallest positive exponeris fq; with 5;(0,1):4’ EMATICA, and we used the program to generate expressions
still less relevant than the scaling of the forced solution. Wefor the first few values fot$?) presented below:
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+ +(1
m n {3mn {3

0 0 O 0
2_
0 1 4 ﬂ
d-1
2(1 1d-31d%-19d%-2d*
0 2 8 (159+91d—31d%-19d d*)

—48+4d+32d°+11d%+d*
6 (780+503d—89d?—103d%—19d*—d®)

0 3 12 —480—-8d+324d%+142d3+21d*+d°
3 0 6 —3(15+8d+d?)
—2+d+d?
3 1 10 _(9+d)(—489—131d+136d2+53d3+5d“)
—144—36d+100d°+65d3+14d*+d°
6 0 12 3(3+d)(11+d)?(370+216d+37d>+2d3)
3840+ 544d — 2584d°— 1460d°—310d*—29d°—d®
m n L3mn (s
0 0 —-2d+2 -1
0 1 -2d-2 8-d
d—1
—3(90+62d—10d>—9 d®—d%
0 2 -2d-6

—48+4 d+32d°+11d%+d*
4200+3010d—210d?>-476d*-93 d*-5 d°
B —480-8d+324d?+142d%+21
(5+d)(7+2d)
- 2-d-d?
(9+d)(441+135d—104d?>—42 d®>—4 d%)
© —144-36d+100d%+65d3+14 d*+d°
5(11+d)(6558+6508d+2409d%+412 d®+33 d*+d°)

0 3 —2d-10

3 0 —-2d-4

3 1 —-2d-8

6 0 -—-2d-10
—3840-544d+2584d°+1460d°+310d*+29 d°+d°® “3
|
IV. PERTURBATION THEORY IN THE LIMIT  £,—2 [p%(1—p?)20%+p(1—p?)(1—2p°+ {3p?)d,
p

In this section we treat the cagg=2—{,<<1 perturba- +(1=p2)2+ f -0 45
tively. The perturbation theory is singular, since the leading- (1=p2) g wip)]t(p,4)=0, 49
order approximation, obtained by setting the small parameter ; ¢
{,=0 is not valid throughout the entire domain.We employ =228 (d+2)(d—1 +(_3_1)
boundary layer techniques and matching of asymptotics to wip)=p 2d (d+2)(d-1) 2
obtain an asymptotic approximation fgg in this limit. As
expected/; goes to 0 with{,, but with a nontrivial depen- X[(d—1)(p%+ 1)+ p>— 1]] _ (46)
dence

This significant simplification is a consequence of the higher
£3=0(V!|Ingy|). (44  symmetry of the passive scalar equation in this limit, as dis-
cussed in detail in Ref$7,8].

Making use of the symmetry, we look for solutions of the
A. Leading-order solution form

As in the case{,=0 discussed above, substituting
{,=2 into the zero-mode equatio21) yields an equation f(p,¢)=fm(p)coane, m=3n, n=0,12.... (47
with coefficients which are independent of the variabfle
This equation reads The functionsf,, satisfy the ODEs
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[p2(1_p2)23i+p(1_p2)(1_2p2+ éspz)ﬁp The outer ;olution is a valid asymptotic approximation of
the true solution only wheif,<1—p. We expect the solu-
—m2(1—p?)+w(p)]fm(p)=0. (48)  tion to vary very rapidly within a boundary layer near

) ) N ) p=1. The physical reason for this is that whép=2 the
Equation(48) has regular singularities at the points 0 and 1.shearing action of the velocity field on any configuration of

In close analogy with the cagg =0 we find that the Frobe- three points is area preserving. Thus any collinear configu-

nius exponents at 0 arem, and choose the solution which ration is “stuck” for infinitely long times as long as the

behaves ap™ at 0, thus providing the boundary condition at molecular diffusivity is neglected. Whefy— 2 this property

0. affects strongly configurations that are almost collinear.
The behavior near the boundasy= 1 is different. In con-  Therefore the inner solution, valid within the boundary layer,

trast with the case €¢,<2 where one of the Frobenius should be expressed in terms of a “fast” variabtethat

exponents is always 0, whefy=2 the Frobenius exponents changes on a scale inversely proportionaffpnamely,

depend on the value af;, and generally neither is 0. Thus _

the qualitative behavior of the zero modes for p=1tiom 6D

0<{,=2—-¢{y<<1 nearp=1 is different from that of the We therefore change the variakjeto 7 in the differential

solutions of Eq.(46) where ¢, is set equal to 2. In other equation(21) and keep the leading terms da. The resulting

words, we expect the existence of a boundary layer neagquation for the inner solution is

p:1_; Eq. (46) describes WeII_ only the behavio_r of 'gkmater de1 (d+3)(d—1) 1

solution, namely, the leading-order approximation away T( — —p(¢>)) P+ (—p(¢)— e

from the boundary layer. 2d T 4d 2
The outer solution may now be written explicitly. Using

standard transformatiojd 2] Eq. (48) may be reduced to a X d,+w(1)/4

hypergeometric equation, whose solution which obeys the

p=0 boundary condition is where

f"(7,¢)=0, (52

fm(p)=pMF1(M/2,(M+1)/2;m+1;p?). 49
m(p) = p"2F1(M/2,( ) P (49) o= S In(1— cos) (oS’ — cos 2'),
Since we anticipate that;<1, we give in Eq.(49) the so- ¢' =, px2ml3
lution of Eq. (48) taking {3=0. This approximation is justi- (53
fied to leading order posteriori when we find thaif; is  and the functiorw is defined in Eq(46). It is crucial for the
indeed small. The outer solution is constructed from thematching between inner and outer solution to realize that Eq.
fm's by (52) is not valid near the fusion poinig=2mn/3. The sig-
nificance of this fact is explained below.
ou _ Equation(52) has a regular singularity at=0 which cor-
f t(p,¢)—m=013’6’ Vmfm(p)COIMS. (50 responds to the=1 boundary, and as in the other cases
demanding regularity gives a boundary condition at this
The coefficientsy,,, are unknown at this stage and they will point. The equation can be again transformed into the hyper-
be determined by matching with the inner solution. geometric equations, so it has solutions of the form

L (d-1g 1 (d+3)d-1) 2d 7

fin(71¢):#(¢)2Fl 4 1_51 2(d+1) "d+1 p(¢) . (54)

Here again we used the smallnesg gfand neglected terms We make use of the asymptotic behavior of the hypergeo-
of higher order in it. The functiofi™ provides an asymptotic metric functions[12]. For the outer solution we need the
approximation to the actual solution whenr<(1/{,). It  asymptotics of the hypergeometric function with argument
depends on the functiop(¢) that will be determined by close to 1, yielding

matching to the outer solution.

fU%p, ) ~ > 2™y [1-my2(1-p)lcogme).

B. Asymptotic matching 1-p<1m
The next step involves matching of the two approxima- (56)
tions f and f°" in their common region of validity For the inner solution we use the behavior of the hypergeo-
metric function for large negative values, and obtain, usin
[y<1-p<l. (55) ge neg g

the relation betweep and,
14 ctan]——2 } (57)
C PEVETNE
“*Nzp(d)

We perform the matching using standard boundary layer .
methods by examining the asymptotic behaviorf8fand f%p, ) ~ u(edh)
foUin the matching regior{55) and balancing coefficients. {o<l-p
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where (1—pcosp) %22~ 1—1,In(1— pcosp)
(d+3)(d—1) ~1-34,In(1—cosp),
ﬁr( 2(d+1) ) d—1 [d+1 8 (66)
c= \/ .
F((d—+ 3)(d-1) 1) 4 2d for 1— p=0({,). When ¢?=0(¢,) the second approxima-
2(d+1) 2 tion is no longer valid, and one has instead
To proceed with the matching of Eq&6) and (57), we (1—pcosp)  “22~1—-37,In[(1—p)+3¢2], (67

first match theO(1) terms[for small (1-p)], giving
so that instead of Eq52) we get a similar equation in which
p(¢) is replaced by Int 7+ 14?). The resulting equation
is no longer integrable in terms of hypergeometric functions.
However, we still expect the asymptotic approximat{6i)
i.e., 2"y, are just the coefficients of the Fourier series ofto be valid, but for smalky the functionp(¢) is no longer
w(¢). Next we have to match th@(\1—p) terms giving  given by Eq.(53). We may estimat@(¢) for small ¢ by the
following consideration. Examining Eq52) we see that
cls p(¢) is the value ofr where the coefficient of the second
———u(p)=> —my22My,codme).  (60)  derivative crosses over from quadratic behavior to linear be-
{op(¢) m havior, and the coefficient of the first derivative crosses over
from linear to constant behavior. Whest=0(¢,) there is
also a crossover, but to a linear or constant function times a
logarithmic function ofr. The logarithmic function changes
p(¢)*1’2=2 pPmcoS Me) (61)  very slowly, and may be approximated roughly by a con-
m stant. The crossover occurs when

u<¢>=§ 2™y cod meh), (59)

We expandp(¢) Y2 in Fourier series,

and substitute in Eq60) to get, using Eq(59), | 7|~ £oIn(&) 7]+ 62) ~ LoIn(&y). (69)
(o4 We are thus led to make the approximation
> 2, Prvmicod(n=m)g]+cog (n+m) 41}
"Nt p($)~Lang, for ¢?=0(Z,). (69
=2 —my2v,,codmg). (62  This estimate implies that when calculating the Fourier co-

efficients in Eq. (65 the integral should be cut off at
¢~\(,, giving the coefficients a/[InZ,| dependence on
y§2. It is now possible to balance powers in the matching Eq.
(63), obtaining the order of magnitude relati¢4d).

Equating Fourier coefficients of the same order yields finall

c{3
— _n)=— . 63
; 2\/§—2pn(vm+n+vlm n|) Mmvy, (63

V. SOLUTIONS FOR GENERAL VALUES OF ¢,

The matching conditiori63) is a generalized eigenproblem  For general values of, andd the differential equation

for the infinite vectory,,, with eigenvaluess. (21), which has variable coefficients, is not accessible to ana-
Sincel; appears in Eq63) only through the combination Iytic techniques.. In this section we present numerical solu-

{3/\/Z,, one would be led to conclude thag=0O(/Z,) for  tions of the scaling exponents for arbitr?ry values of,,

all nontrivial solutions of Eq(63) with different numerical using a discretized version of the operaBy: Since the dif-

coefficients. This consideration is modified, however, sincderential problem is a linear homogeneous equation with lin-

the coefficientp,, themselves also depend éxnas will now  ear homogeneous boundary conditions, the discretized prob-

be demonstrated. lem is also a homogeneous linear equation, implying that
It follows from the definition ofp(¢), Eq. (53), that nontrivial solutions exist only when the determinant of the
discretized operator vanishes. This determinant depends
p()=0[ $?In( )] (64)  parametrically on/5. Since the differential operator is de-

fined on a compact domain we expect the determinant to
for ¢ small. Note that the Fourier coefficients are written  vanish only for discrete values g for any given values of
as integrals ¢, and the dimensionalitd. One solution is known to exist
always, a constant zero mode associated Wik 0. Our
aim is to find the lowest lying positive real solutiogs for
which the determinant vanishes.

The discretization of the operaté; was carried out as
All these integrals diverge ap=0, which is precisely the follows: We defined a nine-point finite difference scheme for
fusion point where the approximatigb4) ceases to be valid, the second-order equatiof2l). The discretization of the
requiring a more careful examination of the behavior in thisboundary conditions gi=1, Eq.(26), is achieved using the
region. In deriving Eq(54) we made the approximation same scheme, which requires in this case only three bound-

1

:_F”d_‘i’
=2 lo Jn(e)

for n>1. (65)
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FIG. 1. The scaling exponegt as a function of,, found as the FIG. 2. Same as Fig. 1, but far=3.
loci of zeros of the determinant of the matrix, foe=2.

) o ) ) part of the actual spectrum near this point. These branches
ary points and one interior point, since on the boundary th@eem to approach the accumulation point with a slope that
radial derivative appears in first order. Using the symmetryyrows without limit. This finding is in agreement with the

of the problem we restricted the domain to one-sixth of theanalytic result of the perturbation calculation presented in
circle, 0<¢<w/3. The symmetry implies that the original ggc. |v.

problem on the full circle is equivalent to the problem on the
reduced domain with simple Neumann boundary conditions VI. CONCLUSIONS
d4f(p,¢$)=0. On the new boundary lings=0,7/3. As ex-
plained above, the discretized problem is a matrix eigenvalue It is well known by now that there exists a disagreement
problemB;W¥ =0, whereB; is a large sparse matrix, whose between the scaling exponerdisand the higher-order expo-
rank depends on the mesh of the discretization, #nid the  nents{, computed via perturbative approaches and the pre-
discretized version of the zero mode We used NAGs dictions of another approach based on the fully fused struc-
(NAG is a numerical analysis packageparse Gaussian ture functions. The latter approach seems to be consistent
elimination routines to find the zeros of dBY)), and deter-  with the results of numerical simulations in two spatial di-
mined the values of; for these zeros as a function 6f . mensions. The main conclusion of the present paper is that
The results of this procedure for space dimensidr<,3,4 this disagreement cannot be ascribed to a formal failure of
are presented in Figs. 1, 2, and 3. The zero modes that coie perturbation theory. If we accept the statement that the
respond to any given value d§ can be found straightfor- scalar diffusivity is irrelevant, and compare the predictions
wardly by inverse iterations of the matrB; with an arbi-  of perturbation theory at both ends of the range of the al-
trary initial vector. lowed values of the parametéy,, we find that they are in
excellent agreement with the nonperturbative calculation of

A. Results

The various branches shown in Figs. 1-3 can be orga-
nized on the basis of the perturbation theory nég+0
which was presented in Sec. Il. &,=0 we identify the
actual starting points of the branches with the analytic solu-
tions for the lowest lying positive values @, which are
4,6,8, etc. In addition, fod=2 we observe the highest nega- Cg
tive value which is—2. Measuring the slopes of the various
branches at,,=0 we find full agreement with the perturba- 5.0
tive predictions.

We see that in all dimensions the branch which begins at
=0, {3=4 continues in the nonperturbative region with-
out crossing any other branch until it ends{gt=2, {3=0.

This branch is a continuation of the lowest lying positive
branch predicted by the perturbation theory. The negative

: : 0.0
branch(shown only ford=2) never rises above its pertur- 0.0 05 1.0 1.5 2.0
bative limit and is not relevant for the scaling behavior at any Ch
value of {,,. Note also that the point,=2, {3=0 is an
accumulation point of many branches, and we display only a FIG. 3. Same as Fig. 1, but fat=4.

10.0
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the scaling exponent, again subject to the assumption that thgor examplg, that {; depends on the ratios of the separa-
diffusivity is irrelevant. Therefore, if we want to understand tions (or, in other words, the geometry of the triangle defined
the discrepancy between the two approaches mentiondsy the coordinates If this were also the case for even cor-
above, there are a few possibilities that have to be sorted oyélation functionsF,, , this would open an exciting route for
by further research. further research to understand how non-scale-invariant cor-
(i) The crucial assumption that goes to the fully fusedg|ation functions turn, upon fusion, to scale invariant struc-
approach, which is the linearity of the conditional average ofy,re functions.
the Laplacian of the scalar, is wrong. o , In light of the numerical results of Ref15] and the ex-
(ii) The computation of the zeroﬂmodes which is aCh'evedperimental results displayed [16,17] we tend to doubt op-
by discarding the viscous terms By, is irrelevant for the  tjon (i). If we were to guess at this point we would opt for

physical solution. It is not impossible that the limifg—0  possibility (ii). More work, however, is needed to clarify this
and«—0 do not commute, giving rise to some wicked prop-important issue beyond doubt.

erties of the very smalf,, regime. That this is a possibility is
underlined by recent calculations of a shell model of the
Kraichnan mode[13], in which it was shown that the addi-
tion of any minute diffusivity changes the nature of the zero
modes qualitatively. We thank Bob Kraichnan for useful suggestions and J-P.

(iif) Lastly, and maybe most interestingly, it is possible Eckmann and Z. Olami for discussions. This work was sup-
that the physical solution is not strictly scale invariantported in part by the US-Israel BSF, the German-Israeli
through all the range of allowed distancgs4]. In other  Foundation, the Minerva Center for Nonlinear Physics, and
words, it is possible thaf;(rq,r,,r3) is not a homogeneous the Naftali and Anna Backenroth-Bronicki Fund for Re-
function with a fixed homogeneity exponety, but rather search in Chaos and Complexity.
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APPENDIX: THE COEFFICIENTS

{0, o, 1, -1, 1, 8 {0, 0, 2, -2, 0, -2}

{0, 0, 2, -1, 1, -4 {0, 1, 0, -1, 0, -2}

{0, 1, o, 0, 1,-12 {0, 1, o, 2, 1, 8

{o, 2, 0o, o0, 0, -2 {o, 2, 0, 1, 1, —4} (A1)
o,: {0, 2, 0, 2, 0, 2 {0, 2, 0, 3, 1, 4

{1, o, 1, -1, 1, -8 {1, 1, o, o, 1, 8

{1, 1, o, 2, 1, -8 {2, 0, 0, 0, 0, -2

{2, 0, 0, 1, 1, 4

{0, 0, 1, -1, 1, -4} {0, 1, 0, 0, 1, 4
0,0 {0, 1, 0, 1, 0, 2 {1, 0, 0, 0, 0, -2} (A2)
og: {0, 0, 1, 0, 2, —4} {0, 0, 1, -2, 2, 4

{0, 0o, 2, 0, O, 1 {0, 0, 2, -2, 0, -1}

{0, 0, 2, 0, 2, 2 {0, 0, 2, -2, 2, -2}

{0, 1, 0, -1, 0, -1} {0, 1, o, 1, o0, 3

{0, 1, 0, 3, 0, -2} {0, 1, o, 0, 1, -2

{0, 1, 0, 2, 1, 2 {0, 1, 0, -1, 2, -2}

{0, 1, o0, 1, 2, 2 {0, 1, 1, o, 1, 2

{0, 1, 1, 2, 1, -2} {0, 1, 1, -1, 2, -4 (A3)

{0, 1, 1, 1, 2, A {0, 2, 0, 0, O, -1

{0, 2, 0, 2, 0, 2 {0, 2, 0, 4, 0, -1}

{0, 2, o, 1, 1, -2 {0, 2, 0, 3, 1, 2

{0, 2, 0, 0, 2, 2 {0, 2, 0, 2, 2, -2

{1, o, 1, -1, 1, -2} {1, o, 1, 1, 1, 2

{1, 1, o, 1, 0, -2 {1, 1, 0, 3, 0, 2

{1, 1, o, o, 1, 2 {1, 1, 0, 2, 1, -2}

{2, 0, 0o, 0, o0, 1 {2, 0, 0, 2, 0, —1}.
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